
APPLIED ECONOMETRICS SUMMARY

Lec 1. Potential outcomes framework

• SDs in {brackets}; SEs in (parentheses)
• Though reject null (two groups different), not causal
• Causal/Treatment Effect: Y1i − Y0i

ATE = Avgn[Y1i − Y0i] =
1
nΣ

n
i=1Y1i − 1

nΣ
n
i=1Y0i

• Constant-effects assumption: Y1i = Y0i + κ
• ∆group mean = Avgn[Y1i|Di = 1]−Avgn[Y0i|Di = 0]

= κ+Avgn[Y0i|Di = 1]−Avgn[Y0i|Di = 0]
∆group mean = Treatment Effect + Selection Bias

• Randomized trial can eliminate selection bias
E[Y0i|Di = 1] = E[Y0i|Di = 0]

• With sufficiently n, the Law of Large Number insures
that conditional averages are close to conditional expec-
tations, reveals κ+E[Y0i|Di = 1]−E[Y0i|Di = 0] = κ

Lec 2. Randomized Trials

• E(Y): fixed feature of population Y → parameter
For samples from pop, many possible Ȳ ≡ Avgn[Yi]
Ȳ : unbiased estimator of the pop mean, E[Ȳ ] = E[Yi]

• Variability: V (Yi) = σ2
Y = E[(Yi−E[Yi])

2], parameter
S(Yi)

2 = 1
n−1Σ

n
i=1(Yi−Ȳ )2, unbiased estimator of σ2

Y

• Ȳ is a random variable;
Replace σ with S(Yi): ŜE(Ȳ ) = S(Yi)√

n
• CLT: N sufficiently large, sampling distribution Yi ∼ N

t(µ) =
Ȳ − µ

ŜE(Ȳ )

• We reject the null at the α = 0.05 level if |t| > 1.96
We reject the null at the α = 0.01 level it |t| > 2.58
We reject the null at the α = 0.001 level it |t| > 3.29

• Difference between group means

t(µ) =
Ȳ 1 − Ȳ 0 − µ

ŜE(Ȳ 1 − Ȳ 0)

ŜE(Ȳ 1 − Ȳ 0) = S(Yi)

√
1

n1
+
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where S(Yi) is pooled sample standard deviation
S(Yi) =

√
pooled_prop · (1− pooled_prop)

S(Yi) =
√

n1∗s21+n2∗s22
n1+n2

Lec 3. Experimental Design

• Type I error (α) - reject null when null is correct
• Type II error (β) - fail to reject null when null is false
• Power of a test = 1 − β: probability of making the

correct decision if the alternative hypothesis is true
• A test is under-powered if it has power < 0.8
• Increase power:

1. as sample size increases: larger sample sizes provide
more information and reduce variability in estimates
2. as effect size increases: H0 and H1 are further away,
easier to distinguish
3. as α increase, while increasing Type I errors

Intraclass correlation (ICC):

• Subjects may have related outcomes, not independent
• 0 < ρ < 1, ρ = 0.1 (plausible value from literature)

ρ =
σ2
γ

σ2
γ + σ2

e

where σ2
γ is variance of γj , across classrooms√
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• If we assume independence and does not accounts for
ICC, underestimate variance of mean, larger t-score,
reject more often

• Clustering: grouping observations into clusters or
groups based on certain characteristics to account for
ICC and heteroskedasticity

Lec 4. Regression

• Experiments often impossible ⇒ regression framework

Yi = α+ βPi + γAi + ei

• Ai or Xi: control variables, a set of dummy variables
that identify individual’s application and acceptance set

• Fitted value: Ŷi = α̂+ β̂Pi + γ̂Ai

• Estimated residuals: Yi − Ŷi

• β is a weighted sum of the within-group differences
• OLS: α̂ and β̂ are chosen to minimize RSS: Σn

i=1e
2
i

• Conditional expectation function (CEF): collection of
conditional expectations E[Yi|Xi = x] over all possible
values of Xi

• Regression is estimating the parameters in a linear CEF

E[lnYi|Pi, GROUPi, SATi, lnPIi]

= α+ βPi +Σ150
j=1γjGROUPji + δ1SATi + δ2 lnPIi

• Three steps of OLS:
1. matches subjects by value of covariates
2. compares the outcome between treatment and control
group of matched subjects for each possible combina-
tion of the conditioning variables
3. produces a single average by averaging all of these
cell-specific contrasts

β = E[lnYi|Pi = 1, ...]− E[lnYi|Pi = 0, ...]

• Any weighted average of cell-specific estimates will be
an unbiased estimate of β

• Why adding covariates/controls: matching subjects
into groups on patterns to ensure that subjects are
similar in terms of ... characteristics that affect ... If
subject within groups are indeed comparable, we have
taken care of selection bias

• We may exclude controls if randomized experiment,
no longer have to worry about selection bias, unbiased

Lec 5. Regression Analysis



• OLS estimator is the sample mean

Yi = α+ βXi + ei

β̂ =
Cov(Xi, Yi)

V ar(Xi)
=

sample covariance
sample variance of Xi

α̂ = Ȳ − β̂X̄

• E[ei] = 0
• E[Xiei] = 0, E[ei|Xi] = E[ei], residuals are part of

outcome Yi uncorrelated with the regressors
• For the k-th regressor:

β̂k =
Cov(X̃ki, Yi)

V ar(X̃ki)

where X̃ki is residual from the regression of Xki on
all other k-1 regressors; the part of Xki that is not
correlated with the other regressors; paritial effect of
X1 on Y that cannot be explained by other regressors

Omitted Variable Bias (OVB):

βs = βl +
Cov(Ai, Pi)

V (Pi)
γ = βl + πiγ

• short equals long plus the effect of omitted times the
regression of omitted on included

• If all relevant regressors included, OLS can estimate
treatment effects

Lec 6. Regression Analysis Application I

• SE of estimated β̂ in a bivariate regression:

SE(β̂) =
σe√
n
× 1

σX

• Smaller SE (ceteris paribus) when:
1. larger samples (n large)
2. regression line fits well (σe small)
3. X is spread out (σX large)

• SE of estimated β̂k from a multiple regression:

SE(β̂k) =
σe√
n
× 1

σX̃k

• Above assumes homoskedasticity: variance of residuals
is unrelated to regressors

• Allow for heteroskedasticity → robust standard errors:
variance of residuals is varying across observations

• Coefficient of determination (R2): 0 < R2 < 1
• R2 is just a useful heuristic

R2 =
SSE

SST
= 1− SSR

SST

• R2 ↑, SSR↓, standard errors for regression coefficient↓
• Adjusted R2

• Heteroskedasticity only affect estimated SE but not
coefficients, higher SE, t-score smaller, rejects less often

Diamond Application:
• as.factor() create one dummy for each category
• Interpretation of β1: Controlling for clarity, on average,

a one carat increase in weight is associated with an
increase in the value of the diamond by $12,350,
holding all else constant

• Interpretation of R2: approximately 96% of the varia-
tion in the dependent variable is explained by the model

• Using hetero (hetero, HC1), robust standard errors
account for possible heteroskedasticity of the error term;
SE on carat is larger than the ordinary SE

• Interpretation of dummies: Controlling for carat, being
in category 3 on average is associated with an increase
in the value of the diamond by $4,253, compared to the
reference group category 2

• No meaningful interpretation of intercpet since no dia-
mond with carat = 0

• Difference between groups: corresponding ∆β
• OVB: Since carat and clarity are negatively correlated

and clarity is positively correlated with price, omitting
clarity will lead to a negative bias, underestimating the
coefficient on carat; R2 drops

• Log-level: On average, each additional unit in Xi is
associated with a 100β1% increase in Y, holding all
else constant

• controlling for <control>, ...
• on average, ...
• ..., holding all else constant

Other
• Selection bias: the difference in potential outcomes

between the group that is selected (self-selected) into
treatment and the group not selected into treatment.

• An example of selection bias: Measure the return to
grad by solely comparing the average earnings between
people that went to grad school and ones that did
not. Individuals that self-select themselves into grad
school may have different characteristics (high skills,
high aspirations, previous network) that would benefit
them regardless of graduate education. Overestimating
the casual effect of grad education on earnings

• In a randomized control trial, we expect treatment and
control group to have same characteristics on average,
balancing test: check if covariates (control variables) are
statistically equal across treatment and control group

• Use sample sizes [100,100] instead of [150, 50] for a
smaller SE:

V ar(Ȳ 1 − Ȳ 0) = σ2
Y

[
1

n1
+

1

n2

]



Lec 7: Regression Analysis: Application II

• Unbiased estimation ⇒ On average, treatment and
control groups are balanced in both observed and unob-
served characteristics. When randomization is success-
ful, the groups should be comparable, any differences
in outcomes can be attributed to the treatment effect

• Covariates = control variables
• If randomized into groups, no need to include covariates
• Adding statistically significant controls will improve SE

since variance of ei ↓ and R2 ↑, increase efficiency

Lec 8: Regression Analysis: Advanced Modeling

• Fixed effects: dummies that account for unobserved
individual heterogeneity that do not vary over time

• State-by-month fixed effects (αsm): capture the un-
observed, time-invariant characteristics specific to each
state for each month
- state-specific policies, culture

Instrumental Variables

• Why IV: randomized trials expensive and regression
inadequate, omitted variable bias unavoidable

• Instrument Zi → Treatment Di → Outcome Yi

• Good IV Requirements:
1) Relevance condition: instrument Zi has a causal
effect on treatment Di.
2) Independent assumption: instrument Zi is randomly
assigned or “as good as randomly assigned,” being
unrelated to the omitted variables (exogenous).
3) Exclusion restriction: single channel through which
instrument Zi affects outcomes Yi, which is through
observed differences in Di.
4) Monotonicity
First Stage (Treatment Di on instrument Zi):

Di = α1 + ϕZi + e1i

ϕ = E[Di|Zi = 1]− E[Di|Zi = 0]

Reduced Form (Outcome Yi on instrument Zi):

Yi = α0 + ρZi + e0i

ρ = E[Yi|Zi = 1]− E[Yi|Zi = 0]

• Casual effect of interest (LATE):

λ =
Reduced Form

First Stage

λ =
E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]

λ =
ρ

ϕ

• Never-takers: E[Y0i|Ni = 1], regardless of the treat-
ment, would NEVER take the treatment;

• Always-takers: E[Y1i|Ai = 1], regardless of being in
the control, would ALWAYS take the treatment;

• Compliers: E[Y1i|Ci = 1], COMPLY: take the treat-
ment if assigned to treatment group and do not take the
treatment if assigned to control group.

• Monotonicity assumption: no defiers; instrument af-
fects the treatment in one direction only

• LATE Theorem: for any randomly assigned instrument
with a nonzero first stage, satisfying both monotonicity
and an exclusion restriction, the ratio of the reduced
form to first stage is LATE, on compliers

λ =
ρ

ϕ
= E[Y1i − Y0i|Ci = 1]

We can only measure impact of treatment on people
who respond to the instrument; unsure about how results
generalize to other populations (external validity)

• Two stage least squares (2SLS), allows more general
models: more than one instrument, including covariates
First Stage (Treatment Di on instrument Zi):

Di = α1 + ϕZi + e1i and forms fitted D̂i

• Fitted D̂i includes variation explained by chosen Zi

Second Stage (Outcome Yi on treatment D̂i):

Yi = α2 + λD̂i + e2i

λ2SLS =
ρ

ϕ
= λ

• Unlike OLS, 2SLS is subject to finite sample bias
• F statistic tests the joint hypothesis that coefficients of

all instrumental variables are equal to zero
• Check if F-statitic > 10 in the first stage
• F-statitic = t2 for one instrument

Lec 11: IV Applications: Class Size

• 1) Use OLS table, see OVB, thus use IV;
2) Think of IV, requirements, formulate First stage,
Reduced form and Second stage;
3) Use First stage and Reduced form coefficient from
table for IV estimates;
4) Use 2SLS for IV estimates and standard errors;
5) Check first stage F-stat = t2 > 10 for one instrument;
6) Only Local Average Treatment Effect, not for every
...

• Internal validity: when the estimation strategy success-
fully uncovers a causal effect

• External validity: when those estimates are predictive
of outcomes in other scenarios

• IV estimate is a local average treatment effect (LATE)
• IV → internal validity, not necessarily external validity

We aren’t learning the effect of Di on Yi for observa-
tions where Zi doesn’t explain Di.

• Possible test for external validity problems: small RSS
from first stage means Instrument Zi explains well Di

Other

• Reverse causality ⇒ X explains Y and Y explains X.
• There could be intra-class correlation between MSAs; A

large and populated MSA will have more IH lanes and
smaller MSAs nearby can benefit from these interstate
highways; cluster by MSA to reduce ICC

• Adding fixed effects helps to control for the unobserved
heterogeneity and can provide more reliable estimates




