STATISTICS

Introduction

Statistics: analyze, interpret, transform data into information

- Descriptive statistics: organize, summarize and present
- Inferential statistics: use sample data to estimate
 - Sample stats (\bar{x} , s), Population parameters (μ , σ)
- Graphical methods: histograms, boxplots
- Summary statistics: Percentile, Median, Quartile, IQR
- If randomly assigned, not much systematic difference
- Measure center: Mean (\bar{x}) , Median, (expectation)
- Measure variability: **Range**, **IQR**, s^2 , (risk/uncertainty)
- Mean is more affected by outliers than Median
 - Median for highly skewed; Mean for symmetrical

Skewness:

- Symmetric if Median = Mean
- Positively (right) skew if Median < Mean
- Negatively (left) skew if Median > Mean

Median % away from Mean:

Median

Mean

- No material skew: Median in 5% of Mean
- Mean-modest skew: Median in $5\%\sim 20\%$ of Mean
- Mean-high skew: Median in 20% of Mean
- Sample variance s^2 :

$$s^2 = \frac{\Sigma(x_i - \bar{x})^2}{n - 1}$$

n-1 correction: two estimation $(\bar{x} \rightarrow \mu, s^2 \rightarrow \sigma^2)$

 s^2 : unbiased estimator for σ^2 With smaller *s*, estimation for μ more accurate

- Empirical rule: 68%, 95%, 99.7% of data within 1, 2, 3 s.d. for normal distribution; Over 3 s.d. is suspicious
- Guesstimate $s = range/\sigma$

Probability

• Rule

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

- Mutually exclusive, $P(A \cup B) = P(A) + P(B)$
- Two events A and B are independent if:
 - $P(A|B) = P(A|\overline{B}) = P(A)$
 - $P(B|A) = P(B|\bar{A}) = P(B)$
 - $P(A \cap B) = P(A) \cdot P(B)$
- Mutually exclusive events are NOT independent
- Law of Total Probability

$$P(A) = \Sigma P(A|B_i) \cdot P(B_i)$$

• Bayes's Rule

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)}$$
$$= \frac{P(B|A_i) \cdot P(A_i)}{P(B|A_1)P(A_1) + \dots + P(B|A_n)P(A_n)}$$

Random Variables (RVs)

• Binomial RV

$$\mu = np, \ \sigma^2 = npq$$

- When p = 0.5, largest variability

- Sample space: the set of all possible outcomes
- RV: a variable that assigns value to each outcome
- Discrete RV
 - PMF: $p(x) \ge 0, \forall x, \Sigma p(x) = 1$

$$\mu = \Sigma x \cdot p(x), \ \sigma^2 = \Sigma (x - \mu)^2 \cdot p(x)$$

• Continuous RV

- PMF:
$$p(x) \ge 0, \forall x, \int p(x) dx = 1, p(c) = 0$$

- Probability is the area under curve

$$\mu = \Sigma x \cdot p(x), \ \sigma^2 = \Sigma (x - \mu)^2 \cdot p(x)$$

- Normal Distribution
 - Mean, Median, and Mode are equal

$$z = (x - \mu)/\sigma, \ \mu = 0, \ \sigma = 1$$
$$x = \mu + z \cdot \sigma$$

• Uniform Distribution

$$\begin{aligned} f(x) &= 1/(d-c), \, \mu = (c+d)/2, \, \sigma = (d-c)/\sqrt{12} \\ P(a < x < b) &= (b-a)/(d-c) \end{aligned}$$

• **Population Average Treatment Effect (PATE)** measures average difference in outcomes between treated group and control group across the population

$$PATE = E(Y|T) - E(Y|T^c)$$

• Randomization creates balance between treatment groups, groups are expected to be similar on average w.r.t. both observed and unobserved characteristics

Central Limit Theorem

- Central Limit Theorem (CLT): the sampling distribution of the sample mean x̄ of a sufficiently large sample (N ≥ 30) will approximate a normal distribution.
- Make probabilistic statements about $\bar{x}\mbox{'s relation to}\ \mu$

$$\mu_{\bar{x}} = \mu, \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

More data, larger n, more reliable estimates of μ

Confidence Interval for population mean μ

- **z-score** \rightarrow how many s.d. a data is away from the mean
- $c \rightarrow$ confidence level, the probability that a range contains the true population parameter (usually 95%)
- $\alpha \rightarrow$ significance level, the likelihood that the true population parameter is out of the range, $\alpha = 1 - c$
- $E \rightarrow$ error bound/margin or error

Confidence interval of z-score

$$\bar{x} \pm E = \bar{x} \pm \left(z_{c/2} \cdot \frac{s}{\sqrt{N}}\right)$$

- Larger N (more data) \rightarrow interval

- Larger c (relaxed) \rightarrow interval^{\uparrow}

Given sample \bar{x} and s, estimate population μ : there is 95% chance that μ is between ... and ...

$$N = \left(\frac{z_{c/2} \cdot s}{E}\right)^2$$

• **t-score**: When $s \rightarrow \sigma$, s is a sample statistic

Confidence interval of t-score

$$\bar{x} \pm t_{c/2}^{df}(\frac{s}{\sqrt{N}})$$

where df = N - 1

- For large N > 30, t-score converges to z-score
- For small N < 30, t-score is recommended, which accounts for the additional variability (though CLT may not hold)

Confidence Interval for population proportion p

- $E(X) = \mu = 1p + 0(1-p) = p$
- $Var(X) = \sigma^2 = (1-p)^2 p + (0-p)^2 (1-p) = p(1-p)$
- **CLT** applies since p is sample average, E(X) = p
 - Rule of thumb: np > 15, n(1-p) > 15
 - CLT may not hold when p is very close to 0 or 1

Confidence interval for p

$$\hat{p} \pm Z_{c/2} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{N}}$$

A guess of p = 0.5 will yield the largest N

$$N = \left(\frac{Z_{c/2}}{E}\right)^2 \cdot p(1-p)$$

Hypothesis Testings

• Assumptions: 1) CLT holds; 2) Randomized

$$H_0$$
: null hypothesis assumed to be true $(\neq, >, <)$
 H_1 : alternative hypothesis $(=, \leq, \geq)$

$$z/t = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{N}}}$$

Not used for population proportions (no $s \rightarrow \sigma$)

	Do not reject H0	Reject H0
H0 True	correct	Type I (α)
H0 False	Type II (β)	correct

- For fixed sample size n, decreasing α increases β
- Increasing sample size n decreases β

CI for two means (t-score):

$$(\bar{x}_1 - \bar{x}_2) \pm t^{df}_{\alpha/2} \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

where $df = n_1 + n_2 - 2$

CI for two proportions (z-score):

$$(\hat{p_1} - \hat{p_2}) \pm Z_{c/2} \cdot \sqrt{\hat{p}(1-\hat{p}) \cdot (\frac{1}{n_1} + \frac{1}{n_2})}$$
 where $\hat{p} = (\hat{p_1}n_1 + \hat{p_2}n_2)/(n_1 + n_2)$

Regression

- $y_i = \beta_0 + \beta_1 \cdot X_i + \epsilon_i \ (\beta_0, \beta_1 \text{ deterministic}, \epsilon_i \text{ random})$ - Assume relationship can be approximated linearly - Assume random error for each data point is drawn
 - independently from a normal distribution with mean 0 and s.d. $\sigma_{\epsilon} : e_i \sim N(0, \sigma_{\epsilon}), P(e|x) = P(e)$
- Minimize SSE: $\sum_i (y_i (\hat{\beta}_0 + \hat{\beta}_1 x_i))^2$

•
$$\hat{\beta}_1 = \frac{ss_{xy}}{ss_{xx}}, \ \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

- Residual standard error, $s_{\epsilon} = \sqrt{\sum \frac{(y_i \hat{y})^2}{n-2}}$
- $s_{\hat{\beta}_1}$ measures the precision of $\hat{\beta}_1$ as an estimate for β_1

$$s_{\hat{\beta}} = s_{\epsilon} / \sqrt{ss_{xx}}, ss_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2$$

• Linear Regression:

-
$$y = \beta_0 + \beta_1 \cdot x$$
, (y dependent and x independent)
- $y = \beta_0 x^{\beta_1}$, $logy = \beta_0 + \beta_1 \cdot logx$

• Testing significance of coefficients:

$$t = \frac{\hat{\beta}_1 - \beta_1}{s_{\hat{\beta}_1}}, df = n - 2$$

Reject: $t > t_{\alpha/2}, n-2$ (2-tailed), $t > t_{\alpha,n-2}$ (1-tailed) • C

$$\hat{\beta} \pm E = \hat{\beta} \pm t^{df}_{\alpha/2} \cdot s_{\hat{\beta}}$$

- Coefficient of Determination (R^2) : proportion/percentage of variation in y that is "explained" by regression
 - $R^2 = 1$: perfect linear relationship
 - $0 < R^2 < 1$: not perfect linear relationship $R^2 = 0$: no linear relationship
- Multiple Regression: df = n k + 1, where k is the number of independent variables
- Correlation r: the association between x_1 and x_2 $P(\epsilon_i | x) = P(\epsilon)$ implies r = 0
- Randomization reduces the risk of omitted variable bias
 - Avoid Omitted Variable Bias: 1) Add more regressors; 2) Randomization; 3) Instrumental Variable